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A graph G is called (d1, . . . , dr)-colorable if its vertex set can be partitioned into r sets 
V 1, . . . , Vr such that the maximum degree of the induced subgraph G[V i] of G is at most di

for i ∈ {1, . . . , r}. Steinberg conjectured that every planar graph without 4/5-cycles is (0, 0, 
0)-colorable. Unfortunately, the conjecture does not hold and it has been proved that every 
planar graph without 4/5-cycles is (1, 1, 0)-colorable. When only two colors are allowed 
to use, it is known that some planar graphs without 4/5-cycles are not (1, k)-colorable for 
any k ≥ 0 and every planar graph without 4/5-cycles is (3, 4)-colorable or (2, 6)-colorable. 
In this paper, we reduce the gap for 2-coloring by proving that every planar graph without 
4/5-cycles is (3, 3)-colorable.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Graph coloring is one of the most extensively studied topics in graph theory and graph algorithms. In the traditional 
vertex coloring problem, we found an assignment of colors to the vertices of a graph such that no two adjacent vertices 
have the same color. A kind of generalization or relaxation of vertex coloring, called improper coloring or defective coloring, 
is to color the vertices of a graph allowing some adjacent vertices receiving the same color. Formally speaking, a graph G is 
called improper (d1 , . . . , dr )-colorable, or simply (d1 , . . . , dr )-colorable, if its vertex set can be partitioned into r sets V 1, . . . , 
Vr such that the maximum degree of the induced subgraph G[V i] of G is at most di for each i ∈ {1, . . . , r}. In this paper, 
we are interested in the (improper) colorability of planar graphs.

The famous Four Color Theorem says that every planar graph is (0, 0, 0, 0)-colorable. Any graph without odd cycles is 
(0, 0)-colorable. Then under what conditions can the planar graph be colored by using three colors? Grötzsch Theorem 
shows that every triangle-free planar graph is (0, 0, 0)-colorable. Steinberg [18] conjectured in 1993 that every planar graph 
without 4-cycles and 5-cycles was (0, 0, 0)-colorable. In the following decades, there were many contributions toward to 
this research line and Steinberg’s conjecture. Hill et al. [12] proved that every planar graph without 4-cycles and 5-cycles is 
(3, 0, 0)-colorable. Chen et al. [2] proved that every planar graph without 4-cycles and 5-cycles is (2, 0, 0)-colorable. Xu et 
al. [21] proved that every planar graph without 4-cycles and 5-cycles is (1, 1, 0)-colorable. Recently, Cohen-Addad et al. [6]
disproved Steinberg’s Conjecture by constructing a nice example. Whether every planar graph without 4-cycles and 5-cycles 
is (1, 0, 0)-colorable is unknown yet. Recently, people were also interested in improper colorability by using only two colors. 
Sittitrai and Nakprasit [17] first showed that not all planar graphs without 4-cycles and 5-cycles are (1, k)-colorable for each 
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Table 1
Improper colorability results on planar graphs without 4/5-cycles.

Classes Results References

3-coloring

non-(0, 0, 0) Cohen-Addad et al. [6]

(3, 0, 0) Hill et al. [12]

(2, 0, 0) Chen et al. [2]

(1, 1 ,0) Xu et al. [21]

2-coloring

non-(1, k) for all k ≥ 0

Sittitrai and Nakprasit [17]
(2, 9)

(3, 5)

(4, 4)

(2, 6) Liu and Lv [14]

(3, 4) Cho et al. [3]

(3, 3) This paper

positive integer k. Then Liu and Lv [14] proved the (2, 6)-colorability and Cho et al. [3] proved the (3, 4)-colorability for 
planar graphs without 4-cycles and 5-cycles. In this paper, we further show that

Theorem 1. Every planar graph without 4-cycles and 5-cycles is (3, 3)-colorable.

The results on (improper) colorability of planar graphs without 4-cycles and 5-cycles are summarized in Table 1.
We also note some other (improper) colorability results of planar graphs. Cowen et al. [7] proved that every planar graph 

is (2, 2, 2)-colorable. Liu et al. [15] proved that every planar graph without 5-cycles and intersecting triangles is (1, 1, 0)-
colorable. Hoskins et al. [13] proved that every planar graph without 4-cycles and close triangles is (2, 0, 0)-colorable. Dai 
et al. [9] proved that every planar graph without cycles of length 4 or 9 is (1, 1, 0)-colorable. For planar graphs with girth 
at least 6, Borodin and Kostochka [1] proved the (1, 4)-colorability and Havet and Seren [11] proved the (2, 2)-colorability. 
For planar graphs with girth at least 5, Choi et al. [4] proved the (1, 10)-colorability, Borodin and Kostochka [1] proved the 
(2, 6)-colorability, and Choi et al. [5] proved the (3, 4)-colorability.

For the computational complexity, it is NP-complete to check whether a graph is (a, b)-colorable for any nonnegative 
integers a and b except a = b = 0 [20] and NP-complete to check whether a planar graph is (0, 0, 0)-colorable [10]. Further-
more, Sittitrai and Nakprasit [17] showed that it is NP-complete to determine whether a planar graph without 4/5-cycles 
is (0, k)-colorable for every positive integer k. Montassier and Ochem [16] proved the NP-completeness of determining 
whether a planar graph with girth gi, j is (i, j)-colorable, where gi, j is the largest integer g such that there exists a planar 
graph with girth g that is not (i, j)-colorable.

2. Preliminaries

All graphs in this paper are finite and simple. A graph is planar if it has a drawing without crossings; such a drawing is 
a planar embedding of a planar graph. For a graph G , denote the vertex set, edge set and face set by V (G), E(G) and F (G), 
respectively. The graph induced by a subset V ′ of vertices is denoted by G[V ′]. For a vertex subset V 1, we use G − V 1 to 
denote the graph G[V \ V 1], and for an edge subset E1, we let G − E1 be the graph G ′ = (V , E \ E1). A set {v} of a single 
element may be written as v directly. If a vertex or an edge is on the boundary of a face f , then we say f contains the 
vertex or edge. If a vertex is an endpoint of an edge, then we say that they are incident with each other. If a vertex (resp., an 
edge) is on the boundary of a face, then we say that they are incident with each other. We also say two faces are adjacent if 
they share at least one edge on the boundary. An edge with two incident vertices u and v is denoted by uv and a 3-face 
with three incident vertices u, v and w is denoted by uv w .

A vertex is a neighbor of another vertex if they are adjacent. The set of neighbors of a vertex v in graph G is denoted 
by NG(v). The degree of a vertex v is the number of its neighbors and it is denoted by d(v). The degree of a face f is the 
length of the shortest boundary walk of f and it is denoted by d( f ). The girth of a graph is the length of a shortest cycle in 
the graph. A vertex with degree exactly k (resp., at least k or at most k) is called a k-vertex (resp., k+-vertex or k−-vertex). 
Analogously, we can define k-face, k+-face and k−-face. A vertex v is called a k-neighbor (resp., k+-neighbor or k−-neighbor) 
of another vertex u if v is a neighbor of u and the degree of v is exactly k (resp., at least k or at most k).

The following concepts are important and are frequently used in our analysis. A neighbor u of v is a pendant neighbor of 
v if the edge uv is not incident with any 3-face. Let u be a pendant 3-neighbor of vertex v . A 3-face incident with u but not 
v is called a pendant 3-face of v . See Fig. 1(a) for an illustration. A 2-vertex is bad if it is incident with at least one 3-face 
and good otherwise. A 3-face is bad if it is incident with at least one 2-vertex and good otherwise. We further distinguish 
three kinds of bad 3-faces. A bad 3-face is called terrible if it is incident with a 5-vertex with three pendant 3−-neighbors. 
This 5-vertex in the terrible 3-face is also called an abnormal vertex of the 3-face. See Fig. 1(b) for an illustration of terrible 
2
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Fig. 1. (a): xyu is a pendant 3-face of v , where u is a 3-vertex; (b): abf is a terrible 3-face, where a is a 2-vertex, b is an abnormal vertex of the 3-face, 
and c, d and e are 3−-vertices.

Fig. 2. Illustrations of awful 3-faces for k = 6, 7, 8, where vux is an awful 3-face, u is a 2-vertex, v is an abnormal k-vertex of vux, and w1 and w2 are 
3−-vertices.

Fig. 3. Classification of 3-faces.

3-faces. A bad 3-face is called awful if it is incident with a k-vertex that is incident with (k − 5) terrible 3-faces and has 
(8 − k) pendant 3−-neighbors, where k ∈ {6, 7, 8}. This k-vertex in the awful 3-face is also called an abnormal vertex of the 
3-face. See Fig. 2 for an illustration of awful 3-faces. A bad 3-face is called abnormal if it is terrible or awful and normal
otherwise. For an abnormal bad 3-face, there are three vertices incident with it. One is a 2-vertex and one is an abnormal 
vertex. The last vertex is called the third vertex of the abnormal 3-face. Fig. 3 illustrates the classification of 3-faces.

3. Proof framework

Similar to the proofs in most previous papers in this research line, we prove our result by using the discharging 
method [19,8]. The main idea is as follows. We assume to the contrary that Theorem 1 is false, i.e., there is at least one 
planar graph without 4/5-cycles that is not (3, 3)-colorable. Then we look at a such kind of graph with the smallest size 
and use the discharging method to show some contradiction.

A planar graph without 4/5-cycles is called a counterexample if it is not (3,3)-colorable. A counterexample is minimum if 
the number of vertices is minimum and subject to that the number of edges is minimum. We assume that Theorem 1 is 
false and then the minimum counterexample exists. In the following part, we will let G be a minimum counterexample and 
analyze its properties.

We will initially assign a weight (charge) to each vertex and each face of the minimum counterexample G such that the 
sum of weights for all vertices and faces is negative. Then we design a set of rules to switch the weight among vertices and 
faces such that the sum of the total weight keeps unchanged. After the discharging operations, we can see that the weight 
of each vertex and each face is nonnegative, which is a contradiction to the fact that the total weight is negative. Different 
3
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discharging methods may have different weight settings and different rules to switch weight (discharge). We should find a 
good setting to satisfy the requirement of our problem.

3.1. Discharging

In this paper, the initial charge of a vertex v and a face f is denoted by μ(v) and μ( f ), respectively, which are defined 
as follows

μ(v) = 2d(v) − 6 and μ( f ) = d( f ) − 6. (1)

By Euler’s formula and the handshaking theorem, we have
∑

v∈V (G)

μ(v) +
∑

f ∈F (G)

μ( f ) =
∑

v∈V (G)

[2d(v) − 6] +
∑

f ∈F (G)

[d( f ) − 6] = −12 < 0.

Next, we design a set of discharging rules and perform discharging processes by these rules. The final charge of each 
vertex v and each face f after the discharging processes will be denoted by μ∗(v) and μ∗( f ), respectively. Note that the 
sum of charges of all vertices and faces keeps unchanged in our discharging processes. So it holds that

∑

v∈V (G)

μ(v) +
∑

f ∈F (G)

μ( f ) =
∑

v∈V (G)

μ∗(v) +
∑

f ∈F (G)

μ∗( f ).

Our idea to design the discharging rules is to make the charge of each vertex and face nonnegative, i.e., μ∗(v) ≥ 0 and 
μ∗( f ) ≥ 0 for each vertex v and face f . If we can do this, then we have that 

∑
v∈V (G) μ

∗(v) + ∑
f ∈F (G) μ

∗( f ) ≥ 0, which 
is a contradiction to the fact that 

∑
v∈V (G) μ(v) + ∑

f ∈F (G) μ( f ) < 0.
By the minimality of G , we know that in G , each vertex has a degree of at least 2 and each face has a degree of at 

least 3. According to (1), for the initial charge, only 2-vertices will have a negative charge and only 3-faces will have a 
negative charge (there are no 4/5-faces in G). So the purpose of our rules is to send charges to 2-vertices and 3-faces from 
other vertices and faces to make their charges nonnegative. We have seven discharging rules (R1)-(R7). Rule (R1) is to send 
charges from 5+-vertices to 2-vertices, Rules (R2)-(R3) are to send charges from faces to 2-vertices, Rules (R4)-(R7) are to 
send charges from 4+-vertices to 3-faces. The seven discharging rules are defined as follows:

(R1) Every 5+-vertex sends 1 to each pendant 2-neighbor.
(R2) Every 7+-face sends 1 to each incident bad 2-vertex.
(R3) Every 3-face sends 1 to each incident bad 2-vertex.
(R4) For every good 3-face, each incident 4+-vertex sends 1 to it.
(R5) For every normal bad 3-face, each incident 5+-vertex sends 2 to it.
(R6) For every abnormal bad 3-face, the abnormal vertex of it sends 1 to it and the third vertex of it sends 3 to it.
(R7) Every 5+-vertex sends 1 to each pendant 3-face.

Please see Fig. 4 for illustrations of the discharging operations.
We have the following two important properties for the minimum counterexample G after the discharging processes.

Lemma 1. It holds that μ∗( f ) ≥ 0 for each face f in G.

Lemma 2. It holds that μ∗(v) ≥ 0 for each vertex v in G.

We delay the proofs of the two lemmas to the next sections. By Lemmas 1 and 2, we know that the total charge of 
all vertices and faces in the minimum counterexample G is nonnegative. However, the initial total charge is negative and 
the total charge does not change after any discharging operations. This is a contradiction. So we know that the minimum 
counterexample G does not exist and then Theorem 1 holds.

Before proving Lemmas 1 and 2, we first show several structural properties of the minimum counterexample G that will 
be frequently used in our proofs.

4. Structural properties of minimum counterexample

In this section, we always assume that the graph is the minimum counterexample G . Clearly, G is a connected graph 
with the minimum degree of vertices at least 2 and the minimum degree of faces at least 3 by the minimality. Moreover, 
the graph G itself is not (3, 3)-colorable and any proper subgraph of G is (3, 3)-colorable. For a (3, 3)-coloring of any proper 
subgraph of G with the color set {1, 2}, a vertex colored i ∈ {1, 2} is called i-saturated if it is adjacent to 3 neighbors colored 
with i. An i-saturated vertex is also simply called a saturated vertex.

The following three properties were observed in [17]. Note that if any of the three lemmas does not hold, then we would 
be able to find a 4/5-cycle in the graph.
4
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Fig. 4. Illustrations of the discharging operations, where an arrow indicates the direction of sending charges and the number beside the arrow is the charge.

Lemma 3. [17] No two 3-faces share a common edge, and each k-vertex is incident with at most � k
2 � 3-faces.

Lemma 4. [17] Let v be a 2-vertex incident with a 3-face in G. Then the other face incident with v is a 7+-face.

Lemma 5. [17] Let f be a k-face with k ≥ 7 in G. Then f has at most (k − 6) incident bad 2-vertices.

Next, we prove several important lemmas.

Lemma 6. No two 4−-vertices are adjacent in G.

Proof. Assume to the contrary that two 4−-vertices u and v are adjacent in G and we show a contradiction that G would 
be (3, 3)-colorable under this assumption. The proper subgraph G − uv admits a (3, 3)-coloring c. Since c is not a (3, 3)-
coloring of G , we know that both of u and v are colored with the same color i ∈ {1, 2} and at least one of u and v is 
saturated in G − uv . Without loss of generality, we assume that u and v are colored with color 1 and u is 1-saturated in 
G − uv . Since u and v are 3−-vertices in G − uv , we know that u has exactly three neighbors in G − uv that are all colored 
1 in c. Thus, we can get another (3, 3)-coloring c′ for G − uv by recoloring u with 2 from c. Furthermore, c′ is also a (3, 
3)-coloring of G . It is a contradiction. �
Lemma 7. Any 7−-vertex is adjacent to at least one 5+-vertex.

Proof. Suppose otherwise that v is a k-vertex with all neighbors of degree of at most 4, where k ≤ 7. By the minimality of 
G , we know that G − v admits a (3, 3)-coloring c. If one neighbor u of v is saturated in c, then u is a 4-vertex in G , and 
all the other three neighbors of u are colored with the same color in c. We can recolor u with the other color so that u
becomes un-saturated. So we can assume that all neighbors of v are not saturated in c. Since v has at most 7 neighbors, 
we know that there are at most 3 neighbors of v are colored with one color, say color 1. Thus, we can color v with color 1 
to obtain a (3, 3)-coloring c′ for G , a contradiction. �
Lemma 8. Let u be a 2-vertex with two neighbors v and w in G. For any (3, 3)-coloring of G − u, one of v and w is 1-saturated and 
the other one is 2-saturated.
5
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This lemma holds because otherwise we could color u with 1 (if none of v and w is 1-saturated) or 2 (if none of v and 
w is 2-saturated) to get a (3, 3)-coloring of G .

Lemma 9. Let uv w be a terrible 3-face in G, where u is a 2-vertex and v is an abnormal 5-vertex. For any (3, 3)-coloring c of 
G1 = G − {v w, vu}, either v is unsaturated in c or we can recolor v with another color to make v unsaturated.

Proof. We assume that v is saturated in c, say 1-saturated. Then the three neighbors of v in NG(v) \ {u, w} are colored 
with 1 in c. Then we can recolor v with 2 such that v is not saturated in G1. �
Lemma 10. Let uv w be an awful 3-face in G, where u is a 2-vertex and v is an abnormal k-vertex with k ∈ {6, 7, 8}. For any (3, 3)-
coloring c of G1 = G −{v w, vu}, either v is unsaturated in c or we can only recolor vertices in NG [v] \ {u, w} to make v unsaturated.

Proof. We assume that vertex v is saturated in c, say 1-saturated, and try to recolor vertices in NG [v] \ {u, w} to make v
unsaturated in G1. Note that in G1, vertex v is incident with exactly (k − 5) terrible 3-faces and adjacent to exactly (8 − k)

pendant 3−-neighbors by the definition of awful 3-faces and abnormal vertices. We use xi yi v (i ∈ {1, 2 . . . , k − 5}) to denote 
the k − 5 terrible 3-faces containing v , where xi is the 2-vertex.

We look at graph G2 = G1 −{x1 y1, y1 v} ∪{x2 y2, y2 v} ∪· · ·∪{xk−5 yk−5, yk−5 v}, which is also colored with c. By Lemma 9, 
we know that we can get a (3,3)-coloring c′ of G2 such that all yi are unsaturated by recoloring some (may none) of yi
from c.

If one of yi , say yi∗ is colored with 2 in c′ , then we recolor all xi (i ∈ {1, . . . , k − 5}) with 2 to get coloring c′′ . In c′′ , for 
each i ∈ {1, 2 . . . , k − 5} \ {i∗}, there is at most one vertex in {xi, yi} which is colored with 1 and no vertex in {xi∗ , yi∗ } is 
colored with 1. Thus, at most (k − 5) − 1 + (8 − k) = 2 vertices in NG (v) \ {u, w} are colored with 1 in c′′ . We can see that 
c′′ is a (3,3)-coloring of G1 such that v is unsaturated.

Next, we assume that all of yi (i ∈ {1, . . . , k − 5}) are colored with 1 in c′ . If at least one of the (8 − k) pendant 
3−-neighbors of v is colored with 2, then we recolor all xi (i ∈ {1, . . . , k − 5}) with 2 to get coloring c′′ . In c′′ , at most 
(k − 5) + (8 − k) − 1 = 2 vertices in NG(v) \ {u, w} are colored with 1. We still get a (3,3)-coloring c′′ of G1 such that v is 
unsaturated. If all the (8 − k) pendant 3−-neighbors of v are colored with 1, then we recolor all xi (i ∈ {1, . . . , k − 5}) with 
1 and recolor v with 2 to get coloring c′′ . In G1, all neighbors of v are colored with 1 and v is colored with 2. Thus, c′′ is a 
(3,3)-coloring of G1 such that v is unsaturated. �

Lemma 9 and Lemma 10 directly imply the following lemma.

Lemma 11. Let uv w be an abnormal 3-face in G, where u is a 2-vertex and v is an abnormal vertex of the 3-face. For any (3, 3)-
coloring c of G1 = G −{v w, vu}, either v is unsaturated in c or we can only recolor vertices in NG [v] \ {u, w} to make v unsaturated.

Lemma 11 will be frequently used to prove other properties.

Lemma 12. Each abnormal bad 3-face contains only one abnormal vertex.

Proof. Suppose otherwise that an abnormal bad 3-face uv w contains two abnormal vertices, where u is a 2-vertex. Thus, 
both v and w are abnormal vertices of the 3-face. We look at the graph G1 = G −{uv, uw, v w} and let c be a (3,3)-coloring 
of G1. We will apply Lemma 11 on v and w , separatively to make them unsaturated. Since there is no 4-cycle in G , we 
know that NG [v] \ {u, w} and NG [w] \ {v, u} are disjoint. By Lemma 11, we can recolor vertices in NG [v] \ {u, w} to make 
v unsaturated, and by Lemma 11 again, we can recolor vertices in NG [w] \ {v, u} to make w unsaturated. Now we assume 
that both of v and w are unsaturated. If v and w are colored with the same color, then we recolor u with the other color 
and thus this is a (3,3)-coloring of G . If v and w are colored with different colors, then we directly get a (3,3)-coloring of 
G no matter what color u is. In any case, we can get a (3,3)-coloring of G , a contradiction. �
Lemma 13. The third vertex of each abnormal 3-face is a 6+-vertex.

Proof. Let uv w be an abnormal 3-face, where u is a 2-vertex, v is an abnormal vertex of the 3-face, and w is the third 
vertex. By Lemma 6, we know that w is 5+-vertex. We only need to prove that w could not be a 5-vertex. Suppose 
otherwise that w is a 5-vertex. We look at the graph G1 = G − {uv, uw, v w} and let c be a (3,3)-coloring of G1. By 
Lemma 11, we can recolor vertices in NG [v] \ {u, w} to make v unsaturated. If w is saturated in c, then all the three 
neighbors in NG [w] \ {v, u} are colored with the same color as that of w . For this case, we can recolor w with the other 
color to make w unsaturated. Thus, we can assume that both of v and w are unsaturated in c. If v and w are colored with 
the same color, then we recolor u with the other color and thus this is a (3,3)-coloring of G . If v and w are colored with 
different colors, then we directly get a (3,3)-coloring of G no matter what color u is. In any case, we can get a (3,3)-coloring 
of G , a contradiction. So w can not be a 5-vertex and then w is a 6+-vertex. �
6
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Fig. 5. A 5-vertex v is incident with two bad 3-faces u1 v w1 and u2 v w2, where u1 and u2 are bad 2-vertices. In the figure, the number in the bracket 
beside a vertex indicates the color of the vertex, and i-sat (i ∈ {1, 2}) means the vertex is colored with i and it is saturated.

Fig. 6. A 6-vertex v is incident with three bad 3-faces u1 v w1, u2 v w2, and u3 v w3, where u1, u2, and u3 are bad 2-vertices. In the figure, the number in 
the bracket beside a vertex indicates the color of the vertex, and i-sat (i ∈ {1, 2}) means the vertex is colored with i and it is saturated.

Lemma 14. A 5-vertex is incident with at most one bad 3-face.

Proof. Suppose otherwise that a 5-vertex v is incident with two bad 3-faces u1 v w1 and u2 v w2, where u1 and u2 are bad 
2-vertices. We let v ′ be the last neighbor of v not in the two bad 3-faces. See Fig. 5 for an illustration. By the minimality, 
we know that G − u1 has a (3, 3)-coloring c. By Lemma 8, we know that one of v and w1 is 1-saturated and the other is 
2-saturated in c. Without loss of generality, we assume that v is 1-saturated and w1 is 2-saturated. Then we can see that 
u2, w2 and v ′ are colored with 1 in c. Then we can recolor u2 with 2. Now v is not 1-saturated. We can color u1 with 1 to 
obtain a (3, 3)-coloring for G , a contradiction. �

Lemma 15. A 6-vertex is incident with at most two bad 3-faces.

Proof. Suppose otherwise that a 6-vertex v is incident with three bad 3-faces u1 v w1, u2 v w2, and u3 v w3, where u1, u2, 
and u3 are bad 2-vertices. See Fig. 6 for an illustration. By the minimality, we know that G − u1 has a (3, 3)-coloring c. By 
Lemma 8, we know that one of v and w1 is 1-saturated and the other is 2-saturated in c. Without loss of generality, we 
assume that v is 1-saturated and w1 is 2-saturated. So three vertices in {u2, w2, u3, w3} are colored with 1 and then either 
u2 and w2 or u3 and w3 are colored with 1 in c. Without loss of generality, we assume that u2 and w2 are colored with 1. 
Now we can recolor u2 with 2 and v becomes not 1-saturated. We can further color u1 with 1 to obtain a (3, 3)-coloring 
for G , a contradiction. �

Lemma 16. Let v be a k-vertex that is not an abnormal vertex of any 3-face, where 6 ≤ k ≤ 8. Then v is incident with at most (k − 5)

abnormal 3-faces.

Proof. Suppose otherwise that v is incident with at least (k −4) abnormal 3-faces, where 6 ≤ k ≤ 8. Thus, v is incident with 
at least two abnormal 3-faces since k ≥ 6. Denote the (k − 4) abnormal 3-faces incident with v by u1 v w1, . . . , uk−4 v wk−4, 
where u1, . . . , uk−4 are 2-vertices and w1, . . . , wk−4 are abnormal vertices. The other 8 −k neighbors of v are called lateral 
vertices and denoted by v1, . . . , v8−k . For any abnormal vertex wi (1 ≤ i ≤ k − 4) and any lateral neighbor v j (1 ≤ j ≤ 8 −k), 
they have no common neighbor, otherwise there would be a 4-cycle in G . For any two different abnormal vertices wi1 and 
wi2 (1 ≤ i1, i2 ≤ k − 4), the intersection of NG [wi1 ] \ {v, ui1 } and NG [wi2 ] \ {v, ui2 } is empty, otherwise there would be a 
4-cycle in G . These properties will allow us to apply Lemma 11 on each wi independently without affecting other neighbors 
of v .

By Lemma 8, we can assume with loss of generality that there is a (3, 3)-coloring c of G0 = G −{u1 v, u1 w1} such that v
is 1-saturated and w1 is 2-saturated in c. By Lemma 11, we can recolor w1 and some of its neighbors to get a (3, 3)-coloring 
c0 of G1 = G − {u1 v, u1 w1, v w1} such that w1 is unsaturated. Note that w1 should not be colored with 2 in c0, otherwise 
we can recolor u1 with 2 to get a (3,3)-coloring of G , a contradiction. So we assume that in G1, there is a (3, 3)-coloring c0
such that v is 1-saturated and w1 is 1-unsaturated.
7
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Fig. 7. An illustration of G1 and G2 in Lemma 16. In the figure, the number in the bracket beside a vertex indicates the color of the vertex, i-sat (i ∈ {1, 2}) 
means the vertex is colored with i and it is saturated, and i-unsat (i ∈ {1, 2}) means the vertex is colored with i and it is not saturated.

We look at the graph G2 = G1 − {w2u2, w2 v} ∪ · · · ∪ {wk−4uk−4, wk−4 v} with the (3, 3)-coloring c0. By Lemma 11, for 
each wi with i ∈ {2, . . . , k − 4}, we can recolor wi and some of its neighbors to make it unsaturated (note that in G2, wi
and w j (i 
= j) have no common neighbor). Thus, we can assume that in G2, there is a (3, 3)-coloring c1 such that v is 
colored with 1, w1 is 1-unsaturated, and all wi (i ∈ {2, . . . , k − 4}) are unsaturated. See Fig. 7 for an illustration of G1 and 
G2.

We further show that none of wi is colored with 2 in c1. Assume to the contrary that wi∗ (i∗ ∈ {2, . . . , k − 4}) is 2-
unsaturated. Then we recolor all ui (i ∈ {2, . . . , k − 4}) with 2. We look at graph G1. In G1, vertex v has at most (8 − k) +
(k −5) −1 = 2 neighbors colored with 1, which are the (8 −k) lateral neighbors and wi with i ∈ {2, . . . , k −4} \{i∗}. Thus, we 
can recolor u1 with 2 to get a (3,3)-coloring of G , a contradiction. We can also assume that all the (8 − k) lateral neighbors 
of v are colored with 1. Because if one of the lateral neighbors is colored with 2, then in G1, the number of neighbors of 
v colored with 1 is at most (8 − k − 1) + (k − 5) = 2 (after recoloring all ui (i ∈ {2, . . . , k − 4}) with 2). We can recolor u1
with 2 to get a (3,3)-coloring of G , a contradiction. So next we assume that in G2, there is a (3, 3)-coloring c1 such that v
is colored with 1, all wi (i ∈ {1, 2, . . . , k − 4}) are 1-unsaturated, and all lateral neighbors v j ( j ∈ {1, . . . , 8 − k}) are colored 
with 1.

For coloring c1, we recolor all ui (i ∈ {1, 2, . . . , k − 4}) with 1 and recolor v with 2 to get a coloring c2. We can see that 
c2 is a (3, 3)-coloring of G , a contradiction. In any case, we can always get a contradiction that there is a (3, 3)-coloring of 
G . Thus, the lemma holds. �
Lemma 17. No k-vertex is incident with (k − 5) abnormal bad 3-faces and adjacent to (10 −k) pendant 3−-neighbors, where 6 ≤ k ≤
10.

Proof. Suppose otherwise that a k-vertex v (6 ≤ k ≤ 10) is incident with (k − 5) abnormal 3-faces {u1 v w1, . . . , uk−5 v wk−5}
and (10 − k) pendant 3−-neighbors {v1, . . . , v10−k}, where u1, . . . , uk−5 are 2-vertices and w1, . . . , wk−5 are abnormal 
vertices. For any abnormal vertex wi (1 ≤ i ≤ k − 5) and any pendant neighbor v j (1 ≤ j ≤ 10 − k), they have no common 
neighbor, otherwise there would be a 4-cycle in G . For any two different abnormal vertices wi1 and wi2 (1 ≤ i1, i2 ≤ k − 5), 
the intersection of NG [wi1 ] \ {v, ui1 } and NG [wi2 ] \ {v, ui2 } is empty, otherwise there would be a 4-cycle in G . These 
properties will allow us to apply Lemma 11 on each wi independently without affecting other neighbors of v .

In G0 = G − {u1 v, u1 w1}, there is a (3, 3)-coloring c such that v is 1-saturated and w1 is 2-saturated by Lemma 8. We 
can further assume that w1 is unsaturated in G1 = G − {u1 v, u1 w1, v w1} by Lemma 11. If w1 is 2-unsaturated, then we 
could recolor u1 with 2 to get a (3,3)-coloring of G , a contradiction. So we know that w1 is 1-unsaturated. Thus, in G1, 
there is a (3, 3)-coloring c1 such that v is 1-saturated and w1 is 1-unsaturated. We distinguish two cases.

Case 1: k = 10, i.e., v is a 10-vertex in G . Now in G1, vertex v is a 8-vertex contained in four abnormal 3-faces 
{u2 v w2, . . . , u5 v w5}. In G1 with coloring c1, vertex v has only three neighbors colored with 1 since it is 1-saturated. 
Thus, we can assume without loss of generality that both of u5 and w5 are colored with 2 in c1. We look at the graph 
G2 = G1 −{w2u2, w2 v} ∪{w3u3, w3 v} ∪{w4u4, w4 v} with the (3, 3)-coloring c1. By Lemma 11, for each wi with i ∈ {2, 3, 4}, 
we can recolor wi and some of its neighbors to make it unsaturated. Thus, we can assume that in G2 , there is a (3, 3)-
coloring c2 such that v is colored with 1, w1 is 1-unsaturated, u5 and w5 are colored with 2, and all wi (i ∈ {2, 3, 4}) are 
unsaturated.

If one vertex in {w2, w3, w4} is colored with 2, then we recolor all vertices in {u2, u3, u4} with 2. Thus, there are at most 
two vertices in NG(v) \ {u1, w1} are colored with 1. We can get a (3,3)-coloring of G by recoloring u1 with 2. Otherwise 
all vertices in {w2, w3, w4} are colored with 1. For this case, we recolor all vertices in {u2, u3, u4} with 1. Now there are 
two vertices in NG(v) \ {u1, w1} are colored with 2, which are u5 and w5. We can get a (3, 3)-coloring of G by recoloring 
v with 2, u5 with 1 (to make sure that the number of neighbors of w5 colored with 2 will not increase), and u1 with 1, a 
contradiction. See Fig. 8 for an illustration of Case 1.

Case 2: 6 ≤ k ≤ 9. Let G2 = G − {u1 v, u1 w1, v w1} for k = 6 and G2 = G − {u1 v, u1 w1, v w1} ∪ {w2u2, w2 v} ∪ · · · ∪
{wk−5uk−5, wk−5 v} for k ≥ 7. By Lemma 11, we can further assume that in G2, each wi (i ∈ {2, . . . , k − 5} and k ≥ 7) is 
unsaturated. We also recolor ui (i ∈ {2, . . . , k − 5}) with the color different from the color of wi . We note that v1, . . . , v10−k
8



Y. Liu and M. Xiao Discrete Mathematics 346 (2023) 113306
Fig. 8. An illustration of G1 and G2 in Case 1 of Lemma 17. In the figure, the number in the bracket beside a vertex indicates the color of the vertex, i-sat 
(i ∈ {1, 2}) means the vertex is colored with i and it is saturated, and i-unsat (i ∈ {1, 2}) means the vertex is colored with i and it is not saturated.

Fig. 9. An illustration of G1 and G2 in Case 2 of Lemma 17. In the figure, the number in the bracket beside a vertex indicates the color of the vertex, i-sat 
(i ∈ {1, 2}) means the vertex is colored with i and it is saturated, and i-unsat (i ∈ {1, 2}) means the vertex is colored with i and it is not saturated.

are pendant 3−-neighbors and they have at most two neighbors besides v . Recovering of v just makes them from saturated 
to unsaturated. If at most three vertices in NG (v) \ {u1, w1} are colored with 2, then we could get a (3,3)-coloring of G
by recoloring v with 2 and u1 with 1. If at most two vertices in NG (v) \ {u1, w1} are colored with 1, then we could get a 
(3,3)-coloring of G by recoloring v with 1 and u1 with 2. So |NG (v) \ {u1, w1}| ≥ 4 + 3 = 7 and then k = 9.

So v is a 9-vertex in G . In G1, vertex v is a 7-vertex with four neighbors colored with 2 and three neighbors colored 
with 1. If one vertex ui ∈ {u2, u3, u4} is colored with 1, then we simply recolor ui with 2. Now only two vertices in NG (v) \
{u1, w1} are colored with 1, and then we can get a (3,3)-coloring of G by recoloring u1 with 2, a contradiction. So all 
vertices in {u2, u3, u4} are colored with 2. For this case, we can also get a (3,3)-coloring of G by recoloring u2, u3, u4 with 
1 and recoloring v with 2, a contradiction. See Fig. 9 for an illustration of Case 2. �
5. Proofs of Lemma 1 and Lemma 2

Now we are ready to prove Lemmas 1 and 2. First, we consider Lemma 1. We show that any face f in G has a nonneg-
ative charge after the recharging processes.

Proof. Recall that G has only 3-faces and 6+-faces since there are no 4/5-cycles.

Case 1. Face f is a 3-face. Initially we have that μ( f ) = 3 − 6 = −3. Discharging rules (R3)-(R7) involve 3-faces. Only (R3) 
takes some charges from the 3-face and all other rules are going to increase the charge of the 3-face. There are 
three cases for the 3-face f .
Case 1.1. Face f is an abnormal bad 3-face. The face f will send 1 to the incident 2-vertex by (R3), get 1 from the 

abnormal vertex of it by (R6), and get 3 from the third vertex of it by (R6). Thus, μ∗( f ) = −3 − 1 + 1 + 3 =
0.

Case 1.2. Face f is a normal bad 3-face. There is a 2-vertex incident with it. By Lemma 6, we know that the other 
two vertices incident with the face are 5+-vertices. The face f will send 1 to the incident 2-vertex by (R3), 
and get 2 from each of the other two incident 5+-vertices by (R5). Then μ∗( f ) = −3 − 1 + 2 × 2 = 0.

Case 1.3. Face f is a good 3-face. By Lemma 6, we know that f is incident with at most one 3-vertex. If f is 
not incident with any 3-vertex, then each of the three incident 4+-vertices will send 1 to f by (R4) and 
μ∗( f ) = −3 + 3 × 1 = 0. If f is incident with one 3-vertex u, then all neighbors of u are 5+-vertices by 
Lemma 6. Let v be the third neighbor of u not incident with f . Then f is a pendant 3-face of v and f
will get 1 from v by (R7). The other two vertices incident with f are 5+-vertices and each of them will 
send 1 to f by (R4). Thus, μ∗( f ) = −3 + 1 + 2 × 1 = 0.
9
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Case 2. Face f is a 6-face. Initially we have that μ( f ) = 6 − 6 = 0. No recharging rule involves a 6-face. So its charge keeps 
unchanged.

Case 3. Face f is a k-face with k ≥ 7. Initially we have that μ( f ) = k − 6. Only (R2) involves a k-face. By Lemma 5, we 
know that f has at most k − 6 incident bad 2-vertices, each of which may take at most 1 from f by (R2). Thus, 
μ∗( f ) ≥ k − 6 − (k − 6) = 0.

For any face f , it holds that μ∗( f ) ≥ 0, and then Lemma 1 holds. �
Second, we prove Lemma 2. We show that any vertex v in G has a nonnegative charge after the recharging processes.

Proof. Recall that any vertex in G has a degree of at least 2. We will prove the lemma by considering different cases 
according to the degree of the vertex v . Note that in G , a k-vertex v is incident with most � k

2 � 3-faces according to 
Lemma 3.

Case 1. Vertex v is a 2-vertex. Initially we have that μ(v) = 4 − 6 = −2. First, we assume that v is a bad 2-vertex. By 
Lemma 4, we know that v is incident with a 3-face and a 7+-face. Then v can get 1 from each of the two incident 
faces by (R2) and (R3). Thus, μ∗(v) = −2 + 1 + 1 = 0. Second, we assume that v is a good 2-vertex. By Lemma 6, 
we know that v has two 5+-neighbors, each of which will give 1 to v by (R1). Thus, μ∗(v) = −2 + 1 + 1 = 0.

Case 2. Vertex v is a 3-vertex. Initially we have that μ(v) = 6 −6 = 0. We can see that none of our recharging rules involves 
a 3-vertex. So its charge always keeps unchanged.

Case 3. Vertex v is a 4-vertex. Initially we have that μ(v) = 8 − 6 = 2. Note that the third vertex of an abnormal bad 3-face 
is a 6+-vertex by Lemma 13 and then (R6) does not involve a 4-vertex. Only rule (R4) involves a 4-vertex. Vertex v is 
incident with at most two 3-faces by Lemma 3, each of which may take 1 from v by (R4). So μ∗(v) ≥ 2 − 2 × 1 = 0.

Case 4. Vertex v is a 5-vertex. Initially we have that μ(v) = 10 − 6 = 4. There are five discharging rules (R1), (R4), (R5), 
(R6) and (R7) that involve 5-vertices. We know that v is incident with at most two 3-faces by Lemma 3 again. We 
consider the following three subcases.
Case 4.1. Vertex v is not incident with any 3-face. By Lemma 7, we know that v is adjacent to at most four 3−-

neighbors, each of which may take at most 1 from v by (R1) or (R7). Thus, μ∗(v) ≥ 4 − 4 × 1 = 0.
Case 4.2. Vertex v is incident with exactly one 3-face f . If f is not a terrible 3-face or a good 3-face, then v is 

adjacent to at most two pendant 3−-neighbors, each of which may take at most 1 from v by (R1) or (R7). 
The 3-face f may also take at most 2 from v by (R5). So μ∗(v) ≥ 4 −2 ×1 −2 = 0. If f is a terrible 3-face, 
then v is an abnormal vertex adjacent to three pendant 3−-neighbors, each of which may take at most 1 
from v by (R1) or (R7). The 3-face f may take at most 1 from v by (R6). So, μ∗(v) ≥ 4 − 3 × 1 − 1 = 0. If 
f is a good 3-face, then v is adjacent to at most three pendant 3−-neighbors, each of which may take at 
most 1 from v by (R1) or (R7). The 3-face f takes 1 from v by (R4). So μ∗(v) ≥ 4 − 3 × 1 − 1 = 0.

Case 4.3. Vertex v is incident with two 3-faces. By Lemma 14, we know that at least one 3-face is good. According 
to the definition of terrible and awful 3-faces and Lemma 13, we know that if a 5-vertex is incident with 
an abnormal bad 3-face, then the 3-face can only be a terrible 3-face and the 5-vertex is the abnormal 
vertex of the face. However, these do not hold for the vertex v . So none of the two 3-faces is an abnormal 
bad 3-face. We have that μ∗(v) ≥ 4 − 2 − 1 − 1 = 0, because each incident normal bad 3-face may take at 
most 2 from v by (R5), each incident good 3-face may take at most 1 from v by (R4), and there is at most 
one pendant 3−-neighbor that may take at most 1 from v by (R1) or (R7).

Case 5. Vertex v is a k-vertex with k ∈ {6, 7, 8}. Initially we have that μ(v) = 2k − 6. Vertex v is incident with at most � k
2 �

3-faces. If v is the abnormal vertex of an abnormal 3-face, then μ∗(v) ≥ (2k − 6) − 3(k − 5) − 1 − (k − 2(k − 4)) = 0
since v will send 3 to an incident abnormal 3-face if v is not the abnormal vertex of the face and 1 to an incident 
abnormal 3-face if v is the abnormal vertex of the face. If v is not an abnormal vertex of an abnormal 3-face, we 
know that v is incident with at most (k − 5) abnormal 3-faces by Lemma 16.
If v is incident with a good 3-face, then μ∗(v) ≥ (2k − 6) − 3(k − 5) − 1 − (k − 2(k − 4)) = 0. Next, we assume that 
v is not an abnormal vertex of any abnormal 3-face and v is not incident with any good 3-face. We consider the 
following four cases.
Case 5.1. Vertex v is incident with at most (k − 6) abnormal 3-faces. Then μ∗(v) ≥ (2k − 6) − 3(k − 6) − (k − 2(k −

6)) = 0.
Case 5.2. Vertex v is incident with exactly (k − 5) abnormal 3-faces and v is not incident with any normal 3-

face. By Lemma 17, we know that v is adjacent to at most (9 − k) pendant 3−-neighbors. Then μ∗(v) ≥
(2k − 6) − 3(k − 5) − (9 − k) = 0.

Case 5.3. Vertex v is incident with exactly (k − 5) abnormal 3-faces and v is incident with exactly one normal 3-
face. Since v is not an abnormal vertex of an awful 3-face, we know that v is adjacent with at most (7 −k)

pendant 3−-neighbors. Then μ∗(v) ≥ (2k − 6) − 3(k − 5) − 2 − (7 − k) = 0.
Case 5.4. Vertex v is incident with exactly (k − 5) abnormal 3-faces and v is incident with at least two normal 

3-faces. Since v is incident with at least (k − 3) 3-faces, by Lemma 3 we know that k can only be 6 and 
10
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then v is a 6-vertex. However, by Lemma 15, we know that no 6-vertex is incident with three bad 3-faces. 
So this case is impossible.

Case 6. Vertex v is a 9-vertex. Initially we have that μ(v) = 18 − 6 = 12. We know that v is incident with at most four 
3-faces. If v is incident with at most three 3-faces, then μ∗(v) ≥ 12 − 3 × 3 − 3 × 1 = 0, since each incident 3-face 
will take at most 3 from v by (R6) and each pendent neighbor or pendent 3-face will take at most 1 from v by (R1) 
or (R7). If v is incident with four 3-faces and at least one is not abnormal, then μ∗(v) ≥ 12 − 3 × 3 − 2 − 1 = 0, 
since each incident abnormal 3-face will take at most 3 from v by (R6), each other incident 3-face will take at most 
2 from v by (R4) or (R5), and each pendent neighbor or pendent 3-face will take at most 1 from v by (R1) or (R7). 
If v is incident with four abnormal 3-faces, then v is not adjacent to any pendant 3−-neighbor by Lemma 17. We 
have that μ∗(v) ≥ 12 − 3 × 4 = 0.

Case 7. Vertex v is a 10-vertex. Initially we have that μ(v) = 20 − 6 = 14. We know that v is incident with at most five 
3-faces. If v is incident with five 3-faces, then at least one is not an abnormal 3-face by Lemma 17. We have 
μ∗(v) ≥ 14 − 3 × 4 − 2 = 0 because each incident abnormal 3-face will take at most 3 from v by (R6), each incident 
good or normal 3-face will take at most 2 from v by (R4)-(R5). If v is incident with at most four 3-faces, then 
μ∗(v) ≥ 14 − 4 × 3 − 2 = 0.

Case 8. Vertex v is a k-vertex with k ≥ 11. Initially we have that μ(v) = 2k − 6. We know that v is incident with at most 
� k

2 � 3-faces, each of which may take at most 3 from v by (R6), and each pendent neighbor or pendent 3-face will 
take at most 1 from v by (R1) or (R7). If k is odd, then μ∗(v) ≥ (2k − 6) − k−1

2 × 3 − 1 = k−11
2 ≥ 0. If k is even, then 

μ∗(v) ≥ (2k − 6) − k
2 × 3 = k−12

2 ≥ 0.

For any vertex v , it holds that μ∗(v) ≥ 0, and then Lemma 2 holds. �
6. Concluding remarks

Grötzsch Theorem and Steinberg’s conjecture are good issues to consider the (improper) colorable of planar graphs. 
Now Steinberg’s conjecture has been disproved. For three colors, whether every planar graph without 4/5-cycles is (1,0,0)-
colorable is the only unknown case now. However, for two colors, the gap seems still big. We know that every planar graph 
without 4/5-cycles is (2, 6)-colorable and (3, 3)-colorable but some planar graphs without 4/5-cycles are not (1,k)-colorable 
for each k ≥ 0. It will be interesting to further reduce the gap. Another interesting question is that almost all previous proofs 
in this research line can only show the colorability of the graph and we still do not know how to color the graph and even 
do not know whether it is computationally hard or not. It is also worthy to study algorithms and computational complexity 
for coloring the graphs.
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